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Forward 

The Gamet User Interface Development Environment contains a comprehensive set of tools that make 
it significantly easier to design and implement highly-interactive, graphical, direct manipulation user 
interfaces. The lower layers of Ga{llet provide an object-oriented, constraint-based graphical toolkit that 
allows propenies of graphical objects to be specified in a simple, declarative manner and then maintained 
automatically by the system. The higher layers of Gamet include an interface builder tool, called 
Lapidary, that allows the user interface designer to draw pictures of all graphical aspects of the user 
interface. Unlike other interface builders, Lapidary allows toolkit items, such as menus and scroll bars, to 
be created as well as used. and Lapidary also allows application-specific graphical objects (the contents of 
the application's window) to be created in a graphical manner. Other high level tools include an 
automatic dialog box and menu editor called Jade, and a spreadsheet program for specifying complex 
graphical constraints. 

This technical repon collects together a number of recent papers about Gamet, some of which have 
been or will be published elsewhere. This is not the reference manual for Gamet; that is technical report 
number CMU-CS-90-117. 

The first paper, page l, is an overview of the entire Gamet system. Next, page 29, is a discussion of 
how output is handled in Gamet. Input is covered by the paper on page 45. Output and input objects can 
be collected together into "aggregates." This can be defined in a declarative manner, and instances can 
be made of the entire group with a single call. The paper on page 79 discusses aggregates. The high­
level Lapidary interface builder is the topic of the next anicle (page 95), followed by an article on Jade, 
the system for creating dialog boxes and menus (page 115). 

As mentioned in the articles, Gamet is available for general use. Please contact the authors, or send 
mail to garnet@c:s. emu. edu for further information. 
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Automatic Graphical Output Management 
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Abstract 

The Gamet User Interface Development Environment performs automatic screen management for 
applications, while delivering acceptable perfonnance for interfaces involving hundreds or even 
thousands of objects. Garnet provides a powerful output model based on a prototype-instance scheme and 
constraints, yet maintains a simple interface for the application by hiding the complexities of the 
underlying window manager. Using Gamet. an application simply changes the graphical properties of an 
object and Gamet ensures that the screen is updated appropriately. This makes it much easier to create 
graphical interfaces and, since the application is shielded from the window manager, makes it much easier 
to pon interfaces to different machines. Gamet achieves acceptable perfonnance by using an incremental 
algorithm that redraws only those objects that actually intersect the modified regions of the screen. and by 
employing a strategy that usually allows it to avoid examining large groups of objects. This paper 
describes Garnet's output model and its associated incremental update algorithm. 

KeyWords: incremental algorithms, graphics, constraints, display, interactive applications 
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1. Introduction 
The Gamet user interface development environment (UIDE) is one of the first UIDE's to provide 

ailtomatic management of application-specific graphical output at a reasonable level of perfonnance. 
Gamet provides an object-oriented graphical system based on constraint programming that emphasizes 

. ea5e-of-use, portability, and functionality.1 A critical- and distinguishing-part of the Gamet Toolkit is 
its automa.tic screen update algorithm. With this, the application can change the graphical properties of 
objects, such as their position or color, and Gamet ensures that the modified objects and any objects they 
intersect are redrawn correctly. This makes creating graphical user interfaces much easier, relieving the 
programmer of the tedious tasks of writing application-specific redisplay code and of porting this code to 
various machines. In order to achieve reasonable perfonnance, Gamet uses an incremental update 
algorithm that often avoids examining large groups of objects and only redraws those objects that actually 
intersect the modified regions of the screen. In practice, the Gamet Toolkit is quite successful, allowing 
for rapid production of portable and efficient graphical user interfaces for a wide variety of applications. 

Virtually all UIDE's maintain the graphics associated with the gadgets that surround the application 
window, such as buttons, menus and dialogue boxes. However, most UIDE's, such as NeXT's Interface 
Builder and SmethersBames' Prototyper, provide little to no support for the application's interface-the 
graphics within the application window. In these systems, the programmer must write application­
specific algorithms that refresh the screen. These procedures often must interface directly with the 
underlying graphics package-or, at bes~ must use the draw and erase methods supplied by the 
UIDE-making them costly to write and difficult to maintain. Although other UIDE's-such as STUF, 
Apogee and Grow-provide more support for application graphics, they still do not automatically refresh 
the display (with the exception of Apogee, which uses a total screen update algorithm which redraws 
every application object on every screen refresh). 

The main obstacle to providing general, automatic support for graphical output is the issue of 
perfonnance. Of course, it is \llll'easonable to expect a fully-general algorithm to perfonn as well as a 
customized algorithm for any particular application. What is required is that the algorithm perfonn 
acceptably for a broad range of applications. In practice, this means that the algorithm must be able to 
redraw the display quickly enough to allow interactive behavior and avoid any unnecessary delay to the 
user. The automatic, incremental screen update algorithm presented in this paper solves this problem, and 
is the key contribution of the Gamet graphics package. 

2. The Output Model 
The distinguishing features of the Gamet output model are: 

• Retained Objects-the application must register graphical objects with the Update procedure. 
Once registered, the~ will be correctly displayed, even if their features (such as : top, 
: left, or : color) are changed. 

• Stacked Objects-all registered objects are maintained in a total ordering from back to 
front-if two objects interse~ the one that is further back should be drawn first (and could 
well be partially or even totally obscured by the other object, as in figure 1). 

•Automatic Update-all aspects of the graphical update are hidden from the programmer. In 
particular, the programmer never invokes any draw or erase methods on individual objects. 
Instead, the programmer changes properties of objects (and possibly registers or unregisters 

1Gamet also provides a novel input model in its Interactors package. See [Myers 89] for the details. 

2In Garnet, feature names are written preceded by a colon. 
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A 

8 
D 

Figure 1: This figure illustrates how objects overlap, and that the order of drawing is important Also, 
since the Update routine is incremental, if C is erased, only the affected portions of B, D, 
and E will be redrawn. Note that B is drawn with the OR drawing function, E with XOR, 
and the others with COPY. 

objects) and calls a general Update routine. 

•Programmer-Selected Update-updates only occur when the programmer specifically calls 
the Update routine. 1bis allows multiple changes to the view per update. To see the 
importance of this, consider the simple case of moving a rectangle diagonally. 1bis is done 
by first adjusting its : left value, and then its : top value. If the view were automatically 
updated with each change, the rectangle would be redrawn after the : left was changed and 
before the : top was changed. Tilis has the visually displeasing effect of the rectangle 
"bouncing" to its final location. With programmer-selected update, both the : left and 
: top can be changed, and then Update can be called, resulting in only one redraw of the 
view. 

•Mouse-Tracking Support-there are times, such as when the user is dragging a "rubber-band 
line" with the mouse, that cenain objects should be updated frequently enough so as to 
appear to move continuously with the mouse, and the model must support this. 

•Ease-of-Use-above all else, the model is intended to simplify the task of programming 
graphical user interfaces. 1bis is accomplished quite elegantly in Gamet by use of 
reasonable default values for all unsupplied features of an object Thus, the programmer can 
safely ignore the more esoteric features, such as the : fill-rule of an object However, 
Gamet does not sacrifice functionality for ease-of-use, as these features can also be specified, 
if so desired. 

• Ponability--Gamet hides the underlying graphics package (X, QuickDraw, etc.) from the 
programmer, thus ensuring that Gamet-created interfaces can be ported effortlessly to various 
machines and window systems. 

Within this framework, there are many important implementation decisions left to be made. For example, 
the model does not specify that the Update routine must be incremental. However, Gamet is intended to 
support applications that contain as many as 2500 objects. Thus, incrementality is necessary to achieve 
reasonable performance. Similarly, the model does not require an object-oriented implementation, though 
we have chosen one due to its natural and graceful handling of many of the issues involved. At this point, 
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the discussion turns to our implementation of this model. 

3. The Platform 
All the work detailed in this paper has been done on the Gamet UIDE Project [Myers 90a]. Gamet is 

an active research project at Camegie Mellon University. Its goal is to create a set of tools that make it 
significantly easier to design and implement highly-interactive, graphical, direct manipulation user 
interfaces. Gamet is implemented in Common Lisp and uses the X window manager, through the 
standard CLX interface from Common Lisp to X. Gamet is therefore portable and runs on various 
machines and operating systems. So far, Gamet is compiled in CMU, Lucid and Allegro Common Lisps, 
and runs under various versions of X/11. Gamet does not use the Common Lisp Object System (CLOS) 
nor any Lisp or X toolkits ·(such as CLUE, CLIW, Xtk, or Interviews). 

The Update and graphics routines reside in Opal, the Object Programming Aggregate Layer of Gamet 
Opal, in tum, resides atop KR, the Knowledge Representation layer. KR is the lowest level of Gamet. and 
is itself composed of an object system and a constraint system. These levels are briefly described before 
discussing the update algorithm itself (for a full discussion. see [Myers 90b]). 

3.1 The KR Object System 
KR [Giuse 90) provides a prototype-instance object model. rather than the conventional class-instance 

model provided by SmaJltalk, C++ and CLOS. In a prototype-instance model, there is no distinction 
between instances and classes; any instance can serve as a "prototype" for other instances. All data and 
methods are stored in "slots" (sometimes called fields or instance variables). Data and method slots that 
are not overridden by a particular instance inherit their values from their prototypes. Any slot can hold 
any type of value, including a Common Lisp function. Slots are used by Opal to reference the features of 
graphical objects. For example, it is ~ed that the ! left value of any graphical object is stored in a 
slot named : l eft. Note that KR slot names start with colons, and the tenns "slot" and "feature" will 
henceforth be used interchangeably. 

3.2 The KR Constraint System 
A constraint is a relationship among objects that is automatically maintained at run-time, even if one of 

the objects changes. For example, a rectangle's : left might be constrained to be 10 pixels to the right 
of a circle's left side. If the circle's : left is ever changed, the constraint system will automatically 
change the rectangle's : left, without any programmer intervention. We have found constraint 
programming in KR to be far better suited for user interface design work than any conventional 
language-it is easy to declare these constraints, and then leave it to KR to maintain them. 

In writing a constraint solver, there is a choice between lazy and eager evaluation. In lazy evaluation, 
constraints are computed only on demand. In the above example, when the circle's : left is changed, 
instead of recomputing the rectangle's : left, it would simply be marked as invalid. When a slot's 
value is requested and the slot is marked invalid. its value is computed (which often results in requesting 
the values of other slots which the constraint references). Otherwise, if the slot is marked valid, the 
cached value can be returned. In contrast. in eager evaluation. constraints are re-evaluated 
immediately-no slot is ever invalid. Thus, when the circle's : left is changed, the rectangle's : left 
is immediately recomputed. KR uses lazy evaluation. a choice which affects the update algorithm, as 
shall be seen. 
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3.3 The Opal Graphical Object System 
Opal extends KR's object system by providing prototypes for graphical objects, such as rectangles, 

cireles and bitmaps. These prototypes contain all the important slots and default values for their type, as 
well as a draw method for that type. Thus, for example, when programmers need a rectangle. they create 
an instance of Opal's prototype rectangle. They can then override some slots, commonly those which 
determine position, while inheriting other slots, such as the draw method (as suggested earlier, 
programmers never call, write or even modify any draw methods). 

The graphical object prototypes in Opal make it easy to create basic objects. Another important object 
type is the aggregate, which is a collection of basic objects or other aggregates. Graphical objects often 
can be conceptually grouped together. and by placing them within an aggregate, the programmer allows 
Update to logically treat them as a group, too. For example, the bounding box3 of the aggregate is the 
smallest bounding box containing all its components-thus, if the aggregate's bounding box does not 
intersect a given region, none of its components' bounding boxes will intersect it either. In fact, the 
update algorithm takes advantage of this property for increased perfonnance. Also noteworthy is the tenn 
aggregate hierarchy-this refers to an aggregate and all its descendants (which must be basic objects or 
other aggregates). Figure 2 shows a simple menu and the corresponding aggregate hierarchy. 
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Menu* 

Background* Menu Items* Feedback Object 
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White Drop Orange Pear Apple Peach Plum Banana 

Outline Shadow 

(b) 

Figure 2: A menu and its feedback object (a) and its aggregate hierarchy (b) 

Another important Opal object type is the window. Instances of this object correspond to X windows 
on the screen. Each window has an : aggregate slot, which contains an aggregate hierarchy to be 
displayed in that window. There is only one top-level aggregate per window, and all objects to be 
displayed in a window must be part of the hierarchy rooted at this aggregate. Opal's prototype window 
also has an Update method which is inherited by all its instances. Thus. calling the Update routine 
actually entails sending an Update message to a window object. 

3In Gamet. a bounding box is a rectangular region represented by its top. left. bottom. and right coordinates (and, therefore, has 
sides parallel to the top and left of the screen). Moreover. it is the smallest such rectangle that completely SUITounds an object. 
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3.4 A Brief Example 
At this point it may be beneficial to consider an actual example of programming using GameL The 

code in figure 3 shows how simple it is to create a version of the classic "Hello World" program, the 
output of which is in figure 4a. All the programmer needs to do is 

• create the desired objects using create-instance; 

• specify the desired graphical properties by providing slot-value pairs; 

• register the objects with a window using add-componenr, and 

• ask Opal to update the window using update. 

(create-instance 'my- window opal:window) 
(create-instance 'my-agg opal: aggregate ) 
(s-value my-window :aggregate my-agg) 

(create-instance 'my-rect opal:rectangle 
(:top 10) 
(:left 10) 
(:width 50) 
(:height 20)) 

(create-instance 'my- text opal:text 
( :string "Hello World") 

create the Garnet window object 
create an aggregate 
associate the aggregate with 
the window 
create a background rectangle 
with the desired coordinates 

; create a text object with 
; the desired string value, 

(:left (formula (- (gv my- rect :center-x) 
(/ (gv my-text : width) 

( : top (formula (- (gv my- rect :center- yl 

; and constrain its position ... 
2)))) 

(/ (gv my- text : height) 2))))) 
(add-components my-agg my-text my- rect) ; place these objects in 

; window's aggregate 
(update my-win) ; and update the window 

Figure 3: Actual code for a "Hello World" program using Gamet. 

Hello World 

·Hello World 

(a) (b) 

the 

Figure 4: Output of the supplied "Hello World" program (a), and output after the width and height of 
my-rect have been changed by the user (and KR automatically adjusted the left and top of 
my-text to keep it centered). 

The constraints in the : left and : top slots of the "Hello World" text object cause it to stay centered 
within the enclosing rectangle. The special fonn gv (get value) allows constraints to access the values in 
objects' slots. Thus the statement (gv rny-rect : center-x ) will return the value associated with 
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my-rect's : center-x slot, which inherits a formula (from the default rectangle object) to compute the x 
coordinate of the rectangle's center. 

The user can change the size of the rectangle simply by placing new values in my-rect's : width and 
: height slots. KR will automatically reevaluate the constraints in "Hello World", thus keeping "Hello 
World" centered within my-rect. and Opal will automatically update the display, producing the result 
shown in figure 4b. 

4. The Update Algorithm 
As stated earlier, the utility of our output model rests heavily on the quality of the Update routine.4 The 

basic problem that Update addresses is making the view accurately reflect the data, while modifying the 
screen as little as possible. This problem can be broken into the following distinct parts: 

1. Detennine which objects have changed; 

2. Determine what parts of the screen are affected; 

3. Erase the appropriate regions; and 

4. Redraw the appropriate objects in the correct order. 
Of course, there is more to it than this, as discussed in the following sections. 

4.1 Determining Which Objects Have Changed 
As KR is being developed within the Gamet Project, we have been able to integrate hooks into KR that 

help Opal determine which objects may need to be redrawn. Without these hooks, the problem of 
identifying which objects have changed since the last update becomes significant: the only means 
available would be to traverse the entire object hierarchy and test every slot of every object. comparing 
the new values against the values from the last update (which the Update routine must store). However, 
KR aids this process by infonning Opal every time a slot is invalidated.. Note that due to KR 's lazy 
evaluation, this does not immediately indicate that the slot has actually changed its value; it just means 
that it may have changed. For each invalidated slot, Opal checks if the slot is in a graphical object, if it is 
an "interesting" slot5, and if the object is in an aggregate hierarchy connected to a window. If all of these 
are true, then the object is added to the Invalid-Objects list for that window. An invalid-p bit 
is also set in the object, so that invalidations of other slots of that object can be ignored. 

Thus, when the Update routine is called, it now must traverse only those objects on the 
Invalid-Objects list for the window-all the other objects in the window are guaranteed not to have 
changed since the previous update. For each object on this list. the algorithm gets the values of all the 
interesting slots and compares these values against their old values, which were stored in the object at this 
point during the previous update. If any have changed, then the view of this object must have changed 
(by the definition of "interesting" slots). Also, if an object's position or size has changed, then the 

41'0 be fair, our implementation also depends heavily on KR's perfonnance, since constraint solving and message sending 
must occur hundreds of times per call to Update. Fortunately, KR performs very well, taking l.ess than half the time of CLOS, the 
standard Common Lisp Object System, for most operations. 

5Interesting slots are those used by the draw method of the object, such as : l e ft and : color. Other slots, such as 
: p r int-name, are ignored here. 
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bounding box information stored with it must be updated, so that it is always correct 6 

4.2 Determining the Clipping Regions 
A clipping region is defined in both Gamet and X as a rectangular region, with sides parallel to the x­

and y-axes of the screen, to which all graphical output will be clipped-any part of a graphical operation 
occurring outside of the clipping region is ignored. The clipping regions correspond to the parts of the 
screen which must be changed by Update. To be precise. these are exactly the bounding boxes of the 
objects which have changed (and so were identified in the previous section). However, clipping regions 
must not intersect, 7 whereas the bounding boxes certainly may. Moreover, there may be tens or hundreds 
of these bounding boxes, and the cost of finding which objects intersect the clipping regions (addressed in 
section 4.3) grows far too quickly with the nwnber of clipping regions to use one for each bounding box. 
Because of these concerns, the bounding boxes must be merged into some small number of disjoint 
clipping regions. Of course, this results in redrawing more of the screen than is required, but it is more 
efficiem this way. Selecting how many clipping regions should be used. as well as determining the 
method for arbitrating the merging process, are outstanding questions. Currently the system uses two 
clipping regions-the old bounding boxes of all the changed objects are merged into one clipping region, 
and the new bounding boxes of the same objects are merged into the other clipping region. However, if 
these intersect then they are merged into just one clipping region. Once the clipping regions are 
determined, they are erased (by the Clear-Area command in X, for example), and the process turns to 
redrawing these areas correctly. 

4.3 Determining Which Objects to Draw 
This part of the problem is surprisingly difficult to solve efficiently. The problem statement, however, 

is simple: given a small set of rectangular regions (the clipping regions from the previous section), and a 
larger set of rectangular regions (the bounding boxes of all the objects to be displayed), determine which 
members of the larger set intersect any members of the smaller set 1bese are the objects which are, at 
least in part, within an altered (and now erased) region of the screen, and now must be redrawn. 

The problem of rectangle set intersections is quite general, and has been studied extensively. For 
instance, Samet [Samet 88] provides a thorough review and analysis of many methods. It is unclear, 
however, whether the savings from these algorithms would offset the cost of maintaining their complex 
data structures, at least for the normal operating conditions of our algorithm. Moreover, there is a key 
feature to our problem which differentiates it from the problems addressed by these other works: none of 
the algorithms we have found allows for a layered space of rectangles. That is, whereas all the algorithms 
build some hierarchical representation of the rectangles, they also presume the space of rectangles is 
flat-there is no notion of some rectangles being behind others. 'Ibis is problematic, as the task requires 
not only. determining which objects to draw, but then drawing them in the proper order, from back to 

front To do this efficiently requires some serious modifications to any of the algorithms we have found. 

For these reasons, we have opted for a more straightforward algorithm which takes advantage of the 

6Actually, there is a problem with this-since aggregates are nol basic graphical objects. they have no interesting slots, and so 
will never appear on the Invalid-Objects lisL Thus. as explained above. when an object changes its size or position, the 
bounding box of the aggregate containing it might be invalidated, but not recomputed. This is solved in Gamet by setting the 
dirty bit of the aggregale, which directs the Update routine to bypass its normal intersection testing for this aggregate and go 
ahead and redraw it (and comedy set its bounding box in this process). 

7This is imposed by X, actually. But it is worth enforcing, since it eliminates redrawing the same part of the screen multiple 
times. 
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aggregate hierarchy created by the programmer. For each clipping region. the algorithm starts with the 
top-level aggregate for this window (which resides in the window's : aggregate slot), and recursively 
traverses only those children that intersect the clipping region. As the children at each level of the 
hierarchy are ordered from back to front, the algorithm can draw these children immediately. 

This process will eventually draw all the graphical objects that intersect the clipping region, and will 
ordinarily omit large portions of the hierarchy from the search. This relies on the fact that if a clipping 
region does not intersect an aggregate, it cannot intersect any of the objects in that aggregate. Thus, as 
illustrated in figure 5, the aggregate strocture acts as a means of pruning the search for intersecting 
bounding boxes. Since objects within an aggregate tend to be near each other (both spatially and 
conceptually), this pruning method has worked well in practice. 
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Figure S: The bounding box of an aggregate encloses the bounding boxes of all its children. This is 
used to prune the search. For example, if only object F is changed, then the Update routine 
will note that the modified screen area does not intersect aggregate B, and so will not test 
against objects C or D (thus saving one rectangle intersection test here). 

In contrast. if we had used a mo_re complicated rectangle intersection method, the update algorithm 
would not have been able to take advantage of the implicit back-to-front ordering afforded by 
aggregates--0bjects or aggregates would be ordered by their spatial position, which would not correspond 
to their back-to-front ordering. Thus, the update algorithm would have to either expend a great deal of 
effort maintaining a secondary back-to-front ordering within each spatial position, or make two separate 
passes, one to identify the objects that must be redrawn, and a second to sort the objects from back to 
front and redraw them. This extra complexity offsets the possible gain from the more complicated 
intersection methods. 

4.4 Special Cases 
The previous section detailed bow the algorithm works in most situations. This section considers an 

important extension to the algorithm and a couple of the algorithm's support functions. 
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4.4.1 Fastdraws 
Although our basic implementation is reasonably fast under normal usage, it is not quite fast enough 

for, say, mouse tracking in a complex interface. We provide this added functionality by way of 
Fastdraws. Any graphical object can be a Fastdraw, so long as it adheres to two constraints: 

• it must not be behind any noirFastdraw objects; and 

• it must be drawn using XOR 8 

It would be too expensive to check these conditions for each object at every update; instead, programmers 
declare an object to be a Fastdraw by setting its : fa.stdraw-p slot to T. Then these two constraints 
allow a Fastdraw to be rapidly drawn and erased (that is, redrawn), as both of these operations can be 
done without checking if the Fastdraw obscures or is obscured by other objects. 

Incorporating Fastdraws requires modifying the update algorithm in several ways. First, when 
traversing the Invalid-Objects list in section 4.1, Update must check if any of these objects is a 
Fastdraw. If so, Update must 

1. Remove the object from the Invalid-Objects list, and check if it has actually changed 
(just as is done for the normal invalid objects). If it has, then it needs to be erased and 
redrawn correctly, so continue with the following steps: 

2. Add the object to the Changed- Fastdraws list so that it can be drawn later. Also, mark 
it as being on this list, so that the Update routine will defer redrawing the object (in section 
4.3) until all non-Fastdraws are redrawn first 

3. Immediately erase the object, which is done by redrawing it, using the values of its 
interesting slots from the previous update. Note that this does not require extra storage, as 
the algorithm already stores these values at each update so that it can tell which objects on 
the Invalid-Objects list have actually changed. 

At this point, all the Fastdraws have been removed from the Invalid-Objects list, and all of those 
that have actually changed have been placed on the Changed-Fastdraws list and have also been 
erased. The process now proceeds as normal, updating all the remaining invalid objects. However, after 
Update has processed all of the normal (non-Fastdraw) objects, it must then draw all the objects on the 
Changed- Fastdraws list This is appended as the last step in the drawing phase. 

To see why this results in faster performance, consider the common case of dragging a rubber-band line 
across the screen. During this time, the only object that changes should be this line. Thus, this is the only 
object on the Invalid-Objects list Upon discovering that the object is a Fastdraw and that it has 
changed position, the Update routine moves it to the Changed-Fastdraws list. and erases the old line 
(by redrawing it). Since the Invalid-Objects list is now empty, Update bypasses the main part of 
the routine, and immediately processes the Changed-Fastdraws, drawing the line in its new position. 
Note that no intersection tests took place. Note also that the performance is independent of the number of 
objects on the screeir-with this algorithm, a rubber-band line can track the mouse over thousands of 
objects. 

8Drawing using XOR directs the window manager to use the exclusive-or of the bits from this object and the bits already 
underneath il When the object is drawn a second time using XOR, it is actually erased, and the screen is left in its previous state 
before the object was originally drawn. 
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4.4.2 Add and Remove Component 
Graphical objects are registered with the Update routine by the Add-Component routine. which adds 

an object to an aggregate. If this aggregate is in the aggregate hierarchy of a window. the object will be 
displayed in that window in the next call to Update. Add-Component also takes an argument indicating 
where the object should be added in relation to the existing children of the aggregate. Thus. you can add 
an object such that it is behind or in front of an existing object. at the front or back of the aggregate, or at 
a specific depth in that aggregate. nus is what guarantees a total ordering of the objects from back to 
front in an aggregate hierarchy. 

There is also a Remove-Component routine, which removes an object from an aggregate (and 
thereby serves to unregister objects with the Update routine). If the removed object is displayed in a 
window, it will be erased in the next call to Update. As the removed object can be added to a different 
window, or possibly even destroyed, it does not suffice to keep a pointer to it for the next call to Update. 
Instead, Remove-Component merges the bounding box of the object into the 
Initial-Clipping-Region of the window. When Update determines the clipping regions (in 
section 4.2), it actually initializes one of the clipping regions to the window's Initial-Oipping-Region. 
nus guarantees that removed objects will be properly erased from the window. 

5. Performance 
The performance of the incremental Update routine is critical for Garnet-style programming to be 

desirable or even practical. That this routine must be incremental is made clear by the graphs in figures 
6a and 6b.9 Figure 6a shows the performance, in terms of the number of screen refreshes per second, 
against the total number of objects being moved. These objects were moved above a simulated graphical 
interface with 201 objects. The total update method performs very poorly, never accomplishing more 
than two updates per second! In contrast, the incremental version achieves nearly 40 updates per second 
when only one object is being moved. As the graph clearly shows, the improvement is substantial. The 
graph also shows that the incremental version deteriorates as the number of objects being moved 
increases (however, it still remains faster than the total method). This is because it is optimized for the 
most common siruation in user interfaces when only a small percentage of the total number of objects in 
the screen have changed. Because of this, a more important question is how performance deteriorates as 
the number of stationary objects in the background increases. This is addressed by the graph in figure 6b, 
which moves only one object over increasingly complex backgrounds.10 Again, the total update method 
performs far worse than the incremental method, achieving less than five updates per second with as few 
as 70 objects in the interface! As is expected, the relative improvement with the incremental version 
increases with the complexity of the interface. 

Both graphs also contain a third line labeled "Fastdraw". nus line indicates that the moving objects 
were declared as Fastdraws, thereby showing the performance of the Fastdraw mechanism. The graph in 
figure 6b shows (subject to some noise) that one Fastdraw can be updated roughly 70 times per second, 
and that this is independent of the size of the interface. nus speed is more than adequate for providing 
mouse-tracking capabilities. The graph in figure 6a shows the deterioration of Fastdraws as the number 
of moving objects increases. This occurs for the same reason that it happens in the standard incremental 
version-it is uncommon for more than just a small percentage of the objects in an interface to change 

9Th.e data for these graphs was collected on an IBM RT with 12 Mbytes, running Mach, CMU CornmonLisp, CUC, and 
Xll/R3. 

1<>rhese background interfaces were generated randomly in such a manner as to approximate the layout and aggregation of 
typical user interfaces created with Gamet 
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Figure 6: Perfonnance of the total and incremental update methods. Pan (a) is for moving various 
numbers of objects over a fixed. 201-object simulated interface. Pan (b) is for moving only 
one object over various-sized simulated interfaces. The line labeled "Fastdraw" is for the 
incremental method when the moving objects are all Fastdraws. 

between updates. 

6. Related Work 
A number of UIDE's, including Grow [Banh 86], Apogee [Henry 88], and STUF [Olsen 86], provide 

suppon in one fonn or another for the graphics associated with an application. However, both Grow and 
STUF force the application to manually refresh the screen by calling appropriate draw methods. Apogee 
will automatically refresh the screen by updating everything, but. as demonstrated in Section 5, Garnet's 
incremental updating algorithm can provide significantly better perfonnance than total updating. A 
number of commercial interface builders, such as NeXT's Interface Builder and the Prototyper from 
SmethersBames, will automatically maintain the graphics associated with the widgets that go around the 
application's window, but do not provide automatic suppon for the application graphics themselves 
beyond simply setting clipping regions and computing what area to redraw after scrolling operations. 

Very little infonnation on incremental redisplay algorithms appears to have been published in the 
literature. One notable exception is the ItemList data structure, implemented by Roger Dannenberg, to 
handle non-hierarchical collections of objects [Dannenberg 90]. The algorithm presented in this paper 
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differs from the ItemList data structure in that it supports a composition mechanism for objects and 
allows objects to be connected via conmaints. One of the key problems that incremental display 
algorithms must address, rectangle intersection, has been extensively studied [Samet 88]. However, as 
noted in Section 4.3, the algorithms that deal with rectangle intersection do not assume a layered space of 
rectangles, nor do they exploit the hierarchical representation of objects afforded by aggregates. Thus, 
without modification, they are inappropriate for the task at hand. 

7. Future Work 
Although Gamet has achieved its perfonnance goals, we hope to improve it even further. Perhaps a 

variant of one of the rectangle intersection techniques from Samet's survey can be developed which does 
not require excessive overhead in order to maintain the back-to-front order of the objects. More work 
must also be done to detennine how many clipping regions should be used, as well as the method for 
arbitrating the merging of the bounding boxes into these clipping regions. Either of these changes could 
result in significant increases in perfonnance within the Update routine. Further analysis of applications 
created with Gamet is also necessary to help quantify the strengths and weaknesses of this approach. 

8. Conclusions 
The Gamet UIDE makes it significantly easier to create efficient and portable graphical user interfaces. 

This is accomplished in part by the screen refresh algorithm presented in this paper. As the algorithm is 
automatic, it relieves the programmer of the tedium nonnally involved in writing and porting redisplay 
code. 1be savings in development time can be significant For example, a moderate-sized graphical 
editor which required 10 to 15 hours to develop with other UIDE's took only 2 to 4 hours to create using 
Gamet. 1be resulting code is also reasonably efficient as the Update routine is incremental, trying to 
study as little of the data and modify as little of the screen as possible on each call. In fact, as the results 
in section 5 indicate, it is due to this incrementality that Gamet can efficiently support interfaces with 
hundreds of objects. Gamet also provides Fastdraws, which allow for mouse-tracking speed of a small 
number of objects over arbitrarily large interfaces. In summary, Gamet presents an easy-to-use, efficient, 
ponable graphical output model which greatly simplifies the task of creating graphical user interfaces. 
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