
fl

'

Computer Science

The Garnet Compendium:
Collected Papers, 1989-1990

edited.by:
Brad A. Myers

August 1990
CMU-CS-90-154

Carnegie
Mellon

The Garnet Compendium:
Collected Papers, 1989-1990

edited by:
Brad A. Myers

August 1990
CMU-CS-90-154

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored in part by DARPA (DOD) under Contract F33615-87-C-1499, ARPA
Order No. 4976, Amendment 20, monitored by the Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, Ohio 45433-6543.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies. either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Keywords: User Interface Development Environments, User Interface Management Systems,
Constraints, Interface Builders, Object-Oriented Programming, Direct Manipulation,
Input/Output

Gamet Compendium - iii - Forward

Forward

The Gamet User Interface Development Environment contains a comprehensive set of tools that make
it significantly easier to design and implement highly-interactive, graphical, direct manipulation user
interfaces. The lower layers of Ga{llet provide an object-oriented, constraint-based graphical toolkit that
allows propenies of graphical objects to be specified in a simple, declarative manner and then maintained
automatically by the system. The higher layers of Gamet include an interface builder tool, called
Lapidary, that allows the user interface designer to draw pictures of all graphical aspects of the user
interface. Unlike other interface builders, Lapidary allows toolkit items, such as menus and scroll bars, to
be created as well as used. and Lapidary also allows application-specific graphical objects (the contents of
the application's window) to be created in a graphical manner. Other high level tools include an
automatic dialog box and menu editor called Jade, and a spreadsheet program for specifying complex
graphical constraints.

This technical repon collects together a number of recent papers about Gamet, some of which have
been or will be published elsewhere. This is not the reference manual for Gamet; that is technical report
number CMU-CS-90-117.

The first paper, page l, is an overview of the entire Gamet system. Next, page 29, is a discussion of
how output is handled in Gamet. Input is covered by the paper on page 45. Output and input objects can
be collected together into "aggregates." This can be defined in a declarative manner, and instances can
be made of the entire group with a single call. The paper on page 79 discusses aggregates. The high­
level Lapidary interface builder is the topic of the next anicle (page 95), followed by an article on Jade,
the system for creating dialog boxes and menus (page 115).

As mentioned in the articles, Gamet is available for general use. Please contact the authors, or send
mail to garnet@c:s. emu. edu for further information.

Gamet Compendium -v- Table of Contents

Table of Contents

F d
...

()f\\'c.tr ••••••••• •• ••• 111

Comprehensive Support for Graphical, Highly-Interactive
User Interfaces: The Garnet User Interface
Development Environ_ment .. 1

Automatic Graphical Output Management .. 29

A New Model for Handling Input .. 45

Using Aggregates as Prototypes ... 79

Creating Graphical Interactive Application Objects by
Demon.strati on ... 9 5

Automatic, Look-and-Feel Independent Dialog Creation for
Graphical User lnterf aces 115

Automatic Graphical Output Management

David S. Kosbie
Brad Vander Zanden

Brad A. Myers
Dario Giuse

School of Computer Science
Carnegie Mellon University

Pittsburgh. PA 15213

Abstract

The Gamet User Interface Development Environment performs automatic screen management for
applications, while delivering acceptable perfonnance for interfaces involving hundreds or even
thousands of objects. Garnet provides a powerful output model based on a prototype-instance scheme and
constraints, yet maintains a simple interface for the application by hiding the complexities of the
underlying window manager. Using Gamet. an application simply changes the graphical properties of an
object and Gamet ensures that the screen is updated appropriately. This makes it much easier to create
graphical interfaces and, since the application is shielded from the window manager, makes it much easier
to pon interfaces to different machines. Gamet achieves acceptable perfonnance by using an incremental
algorithm that redraws only those objects that actually intersect the modified regions of the screen. and by
employing a strategy that usually allows it to avoid examining large groups of objects. This paper
describes Garnet's output model and its associated incremental update algorithm.

KeyWords: incremental algorithms, graphics, constraints, display, interactive applications

Gamet Compendium - 31 - Graphical Output

1. Introduction
The Gamet user interface development environment (UIDE) is one of the first UIDE's to provide

ailtomatic management of application-specific graphical output at a reasonable level of perfonnance.
Gamet provides an object-oriented graphical system based on constraint programming that emphasizes

. ea5e-of-use, portability, and functionality.1 A critical- and distinguishing-part of the Gamet Toolkit is
its automa.tic screen update algorithm. With this, the application can change the graphical properties of
objects, such as their position or color, and Gamet ensures that the modified objects and any objects they
intersect are redrawn correctly. This makes creating graphical user interfaces much easier, relieving the
programmer of the tedious tasks of writing application-specific redisplay code and of porting this code to
various machines. In order to achieve reasonable perfonnance, Gamet uses an incremental update
algorithm that often avoids examining large groups of objects and only redraws those objects that actually
intersect the modified regions of the screen. In practice, the Gamet Toolkit is quite successful, allowing
for rapid production of portable and efficient graphical user interfaces for a wide variety of applications.

Virtually all UIDE's maintain the graphics associated with the gadgets that surround the application
window, such as buttons, menus and dialogue boxes. However, most UIDE's, such as NeXT's Interface
Builder and SmethersBames' Prototyper, provide little to no support for the application's interface-the
graphics within the application window. In these systems, the programmer must write application­
specific algorithms that refresh the screen. These procedures often must interface directly with the
underlying graphics package-or, at bes~ must use the draw and erase methods supplied by the
UIDE-making them costly to write and difficult to maintain. Although other UIDE's-such as STUF,
Apogee and Grow-provide more support for application graphics, they still do not automatically refresh
the display (with the exception of Apogee, which uses a total screen update algorithm which redraws
every application object on every screen refresh).

The main obstacle to providing general, automatic support for graphical output is the issue of
perfonnance. Of course, it is \llll'easonable to expect a fully-general algorithm to perfonn as well as a
customized algorithm for any particular application. What is required is that the algorithm perfonn
acceptably for a broad range of applications. In practice, this means that the algorithm must be able to
redraw the display quickly enough to allow interactive behavior and avoid any unnecessary delay to the
user. The automatic, incremental screen update algorithm presented in this paper solves this problem, and
is the key contribution of the Gamet graphics package.

2. The Output Model
The distinguishing features of the Gamet output model are:

• Retained Objects-the application must register graphical objects with the Update procedure.
Once registered, the~ will be correctly displayed, even if their features (such as : top,
: left, or : color) are changed.

• Stacked Objects-all registered objects are maintained in a total ordering from back to
front-if two objects interse~ the one that is further back should be drawn first (and could
well be partially or even totally obscured by the other object, as in figure 1).

•Automatic Update-all aspects of the graphical update are hidden from the programmer. In
particular, the programmer never invokes any draw or erase methods on individual objects.
Instead, the programmer changes properties of objects (and possibly registers or unregisters

1Gamet also provides a novel input model in its Interactors package. See [Myers 89] for the details.

2In Garnet, feature names are written preceded by a colon.

Graphical Output - 32- Garnet Compendium

A

8
D

Figure 1: This figure illustrates how objects overlap, and that the order of drawing is important Also,
since the Update routine is incremental, if C is erased, only the affected portions of B, D,
and E will be redrawn. Note that B is drawn with the OR drawing function, E with XOR,
and the others with COPY.

objects) and calls a general Update routine.

•Programmer-Selected Update-updates only occur when the programmer specifically calls
the Update routine. 1bis allows multiple changes to the view per update. To see the
importance of this, consider the simple case of moving a rectangle diagonally. 1bis is done
by first adjusting its : left value, and then its : top value. If the view were automatically
updated with each change, the rectangle would be redrawn after the : left was changed and
before the : top was changed. Tilis has the visually displeasing effect of the rectangle
"bouncing" to its final location. With programmer-selected update, both the : left and
: top can be changed, and then Update can be called, resulting in only one redraw of the
view.

•Mouse-Tracking Support-there are times, such as when the user is dragging a "rubber-band
line" with the mouse, that cenain objects should be updated frequently enough so as to
appear to move continuously with the mouse, and the model must support this.

•Ease-of-Use-above all else, the model is intended to simplify the task of programming
graphical user interfaces. 1bis is accomplished quite elegantly in Gamet by use of
reasonable default values for all unsupplied features of an object Thus, the programmer can
safely ignore the more esoteric features, such as the : fill-rule of an object However,
Gamet does not sacrifice functionality for ease-of-use, as these features can also be specified,
if so desired.

• Ponability--Gamet hides the underlying graphics package (X, QuickDraw, etc.) from the
programmer, thus ensuring that Gamet-created interfaces can be ported effortlessly to various
machines and window systems.

Within this framework, there are many important implementation decisions left to be made. For example,
the model does not specify that the Update routine must be incremental. However, Gamet is intended to
support applications that contain as many as 2500 objects. Thus, incrementality is necessary to achieve
reasonable performance. Similarly, the model does not require an object-oriented implementation, though
we have chosen one due to its natural and graceful handling of many of the issues involved. At this point,

Gamet Compendium -33- Graphical Output

the discussion turns to our implementation of this model.

3. The Platform
All the work detailed in this paper has been done on the Gamet UIDE Project [Myers 90a]. Gamet is

an active research project at Camegie Mellon University. Its goal is to create a set of tools that make it
significantly easier to design and implement highly-interactive, graphical, direct manipulation user
interfaces. Gamet is implemented in Common Lisp and uses the X window manager, through the
standard CLX interface from Common Lisp to X. Gamet is therefore portable and runs on various
machines and operating systems. So far, Gamet is compiled in CMU, Lucid and Allegro Common Lisps,
and runs under various versions of X/11. Gamet does not use the Common Lisp Object System (CLOS)
nor any Lisp or X toolkits ·(such as CLUE, CLIW, Xtk, or Interviews).

The Update and graphics routines reside in Opal, the Object Programming Aggregate Layer of Gamet
Opal, in tum, resides atop KR, the Knowledge Representation layer. KR is the lowest level of Gamet. and
is itself composed of an object system and a constraint system. These levels are briefly described before
discussing the update algorithm itself (for a full discussion. see [Myers 90b]).

3.1 The KR Object System
KR [Giuse 90) provides a prototype-instance object model. rather than the conventional class-instance

model provided by SmaJltalk, C++ and CLOS. In a prototype-instance model, there is no distinction
between instances and classes; any instance can serve as a "prototype" for other instances. All data and
methods are stored in "slots" (sometimes called fields or instance variables). Data and method slots that
are not overridden by a particular instance inherit their values from their prototypes. Any slot can hold
any type of value, including a Common Lisp function. Slots are used by Opal to reference the features of
graphical objects. For example, it is ~ed that the ! left value of any graphical object is stored in a
slot named : l eft. Note that KR slot names start with colons, and the tenns "slot" and "feature" will
henceforth be used interchangeably.

3.2 The KR Constraint System
A constraint is a relationship among objects that is automatically maintained at run-time, even if one of

the objects changes. For example, a rectangle's : left might be constrained to be 10 pixels to the right
of a circle's left side. If the circle's : left is ever changed, the constraint system will automatically
change the rectangle's : left, without any programmer intervention. We have found constraint
programming in KR to be far better suited for user interface design work than any conventional
language-it is easy to declare these constraints, and then leave it to KR to maintain them.

In writing a constraint solver, there is a choice between lazy and eager evaluation. In lazy evaluation,
constraints are computed only on demand. In the above example, when the circle's : left is changed,
instead of recomputing the rectangle's : left, it would simply be marked as invalid. When a slot's
value is requested and the slot is marked invalid. its value is computed (which often results in requesting
the values of other slots which the constraint references). Otherwise, if the slot is marked valid, the
cached value can be returned. In contrast. in eager evaluation. constraints are re-evaluated
immediately-no slot is ever invalid. Thus, when the circle's : left is changed, the rectangle's : left
is immediately recomputed. KR uses lazy evaluation. a choice which affects the update algorithm, as
shall be seen.

Graphical Output -34- Gamet Compendium

3.3 The Opal Graphical Object System
Opal extends KR's object system by providing prototypes for graphical objects, such as rectangles,

cireles and bitmaps. These prototypes contain all the important slots and default values for their type, as
well as a draw method for that type. Thus, for example, when programmers need a rectangle. they create
an instance of Opal's prototype rectangle. They can then override some slots, commonly those which
determine position, while inheriting other slots, such as the draw method (as suggested earlier,
programmers never call, write or even modify any draw methods).

The graphical object prototypes in Opal make it easy to create basic objects. Another important object
type is the aggregate, which is a collection of basic objects or other aggregates. Graphical objects often
can be conceptually grouped together. and by placing them within an aggregate, the programmer allows
Update to logically treat them as a group, too. For example, the bounding box3 of the aggregate is the
smallest bounding box containing all its components-thus, if the aggregate's bounding box does not
intersect a given region, none of its components' bounding boxes will intersect it either. In fact, the
update algorithm takes advantage of this property for increased perfonnance. Also noteworthy is the tenn
aggregate hierarchy-this refers to an aggregate and all its descendants (which must be basic objects or
other aggregates). Figure 2 shows a simple menu and the corresponding aggregate hierarchy.

Orange

I Pearl
Apple

Peach

Plum

Banana

(a)

Menu*

Background* Menu Items* Feedback Object

A
White Drop Orange Pear Apple Peach Plum Banana

Outline Shadow

(b)

Figure 2: A menu and its feedback object (a) and its aggregate hierarchy (b)

Another important Opal object type is the window. Instances of this object correspond to X windows
on the screen. Each window has an : aggregate slot, which contains an aggregate hierarchy to be
displayed in that window. There is only one top-level aggregate per window, and all objects to be
displayed in a window must be part of the hierarchy rooted at this aggregate. Opal's prototype window
also has an Update method which is inherited by all its instances. Thus. calling the Update routine
actually entails sending an Update message to a window object.

3In Gamet. a bounding box is a rectangular region represented by its top. left. bottom. and right coordinates (and, therefore, has
sides parallel to the top and left of the screen). Moreover. it is the smallest such rectangle that completely SUITounds an object.

Gamet Compendium - 35 - Graphical Output

3.4 A Brief Example
At this point it may be beneficial to consider an actual example of programming using GameL The

code in figure 3 shows how simple it is to create a version of the classic "Hello World" program, the
output of which is in figure 4a. All the programmer needs to do is

• create the desired objects using create-instance;

• specify the desired graphical properties by providing slot-value pairs;

• register the objects with a window using add-componenr, and

• ask Opal to update the window using update.

(create-instance 'my- window opal:window)
(create-instance 'my-agg opal: aggregate)
(s-value my-window :aggregate my-agg)

(create-instance 'my-rect opal:rectangle
(:top 10)
(:left 10)
(:width 50)
(:height 20))

(create-instance 'my- text opal:text
(:string "Hello World")

create the Garnet window object
create an aggregate
associate the aggregate with
the window
create a background rectangle
with the desired coordinates

; create a text object with
; the desired string value,

(:left (formula (- (gv my- rect :center-x)
(/ (gv my-text : width)

(: top (formula (- (gv my- rect :center- yl

; and constrain its position ...
2))))

(/ (gv my- text : height) 2)))))
(add-components my-agg my-text my- rect) ; place these objects in

; window's aggregate
(update my-win) ; and update the window

Figure 3: Actual code for a "Hello World" program using Gamet.

Hello World

·Hello World

(a) (b)

the

Figure 4: Output of the supplied "Hello World" program (a), and output after the width and height of
my-rect have been changed by the user (and KR automatically adjusted the left and top of
my-text to keep it centered).

The constraints in the : left and : top slots of the "Hello World" text object cause it to stay centered
within the enclosing rectangle. The special fonn gv (get value) allows constraints to access the values in
objects' slots. Thus the statement (gv rny-rect : center-x) will return the value associated with

Graphical Output - 36- Gamet Compendium

my-rect's : center-x slot, which inherits a formula (from the default rectangle object) to compute the x
coordinate of the rectangle's center.

The user can change the size of the rectangle simply by placing new values in my-rect's : width and
: height slots. KR will automatically reevaluate the constraints in "Hello World", thus keeping "Hello
World" centered within my-rect. and Opal will automatically update the display, producing the result
shown in figure 4b.

4. The Update Algorithm
As stated earlier, the utility of our output model rests heavily on the quality of the Update routine.4 The

basic problem that Update addresses is making the view accurately reflect the data, while modifying the
screen as little as possible. This problem can be broken into the following distinct parts:

1. Detennine which objects have changed;

2. Determine what parts of the screen are affected;

3. Erase the appropriate regions; and

4. Redraw the appropriate objects in the correct order.
Of course, there is more to it than this, as discussed in the following sections.

4.1 Determining Which Objects Have Changed
As KR is being developed within the Gamet Project, we have been able to integrate hooks into KR that

help Opal determine which objects may need to be redrawn. Without these hooks, the problem of
identifying which objects have changed since the last update becomes significant: the only means
available would be to traverse the entire object hierarchy and test every slot of every object. comparing
the new values against the values from the last update (which the Update routine must store). However,
KR aids this process by infonning Opal every time a slot is invalidated.. Note that due to KR 's lazy
evaluation, this does not immediately indicate that the slot has actually changed its value; it just means
that it may have changed. For each invalidated slot, Opal checks if the slot is in a graphical object, if it is
an "interesting" slot5, and if the object is in an aggregate hierarchy connected to a window. If all of these
are true, then the object is added to the Invalid-Objects list for that window. An invalid-p bit
is also set in the object, so that invalidations of other slots of that object can be ignored.

Thus, when the Update routine is called, it now must traverse only those objects on the
Invalid-Objects list for the window-all the other objects in the window are guaranteed not to have
changed since the previous update. For each object on this list. the algorithm gets the values of all the
interesting slots and compares these values against their old values, which were stored in the object at this
point during the previous update. If any have changed, then the view of this object must have changed
(by the definition of "interesting" slots). Also, if an object's position or size has changed, then the

41'0 be fair, our implementation also depends heavily on KR's perfonnance, since constraint solving and message sending
must occur hundreds of times per call to Update. Fortunately, KR performs very well, taking l.ess than half the time of CLOS, the
standard Common Lisp Object System, for most operations.

5Interesting slots are those used by the draw method of the object, such as : l e ft and : color. Other slots, such as
: p r int-name, are ignored here.

Gamet Compendium -37 - Graphical Output

bounding box information stored with it must be updated, so that it is always correct 6

4.2 Determining the Clipping Regions
A clipping region is defined in both Gamet and X as a rectangular region, with sides parallel to the x­

and y-axes of the screen, to which all graphical output will be clipped-any part of a graphical operation
occurring outside of the clipping region is ignored. The clipping regions correspond to the parts of the
screen which must be changed by Update. To be precise. these are exactly the bounding boxes of the
objects which have changed (and so were identified in the previous section). However, clipping regions
must not intersect, 7 whereas the bounding boxes certainly may. Moreover, there may be tens or hundreds
of these bounding boxes, and the cost of finding which objects intersect the clipping regions (addressed in
section 4.3) grows far too quickly with the nwnber of clipping regions to use one for each bounding box.
Because of these concerns, the bounding boxes must be merged into some small number of disjoint
clipping regions. Of course, this results in redrawing more of the screen than is required, but it is more
efficiem this way. Selecting how many clipping regions should be used. as well as determining the
method for arbitrating the merging process, are outstanding questions. Currently the system uses two
clipping regions-the old bounding boxes of all the changed objects are merged into one clipping region,
and the new bounding boxes of the same objects are merged into the other clipping region. However, if
these intersect then they are merged into just one clipping region. Once the clipping regions are
determined, they are erased (by the Clear-Area command in X, for example), and the process turns to
redrawing these areas correctly.

4.3 Determining Which Objects to Draw
This part of the problem is surprisingly difficult to solve efficiently. The problem statement, however,

is simple: given a small set of rectangular regions (the clipping regions from the previous section), and a
larger set of rectangular regions (the bounding boxes of all the objects to be displayed), determine which
members of the larger set intersect any members of the smaller set 1bese are the objects which are, at
least in part, within an altered (and now erased) region of the screen, and now must be redrawn.

The problem of rectangle set intersections is quite general, and has been studied extensively. For
instance, Samet [Samet 88] provides a thorough review and analysis of many methods. It is unclear,
however, whether the savings from these algorithms would offset the cost of maintaining their complex
data structures, at least for the normal operating conditions of our algorithm. Moreover, there is a key
feature to our problem which differentiates it from the problems addressed by these other works: none of
the algorithms we have found allows for a layered space of rectangles. That is, whereas all the algorithms
build some hierarchical representation of the rectangles, they also presume the space of rectangles is
flat-there is no notion of some rectangles being behind others. 'Ibis is problematic, as the task requires
not only. determining which objects to draw, but then drawing them in the proper order, from back to

front To do this efficiently requires some serious modifications to any of the algorithms we have found.

For these reasons, we have opted for a more straightforward algorithm which takes advantage of the

6Actually, there is a problem with this-since aggregates are nol basic graphical objects. they have no interesting slots, and so
will never appear on the Invalid-Objects lisL Thus. as explained above. when an object changes its size or position, the
bounding box of the aggregate containing it might be invalidated, but not recomputed. This is solved in Gamet by setting the
dirty bit of the aggregale, which directs the Update routine to bypass its normal intersection testing for this aggregate and go
ahead and redraw it (and comedy set its bounding box in this process).

7This is imposed by X, actually. But it is worth enforcing, since it eliminates redrawing the same part of the screen multiple
times.

Graphical Output - 38- Gamet Compendium

aggregate hierarchy created by the programmer. For each clipping region. the algorithm starts with the
top-level aggregate for this window (which resides in the window's : aggregate slot), and recursively
traverses only those children that intersect the clipping region. As the children at each level of the
hierarchy are ordered from back to front, the algorithm can draw these children immediately.

This process will eventually draw all the graphical objects that intersect the clipping region, and will
ordinarily omit large portions of the hierarchy from the search. This relies on the fact that if a clipping
region does not intersect an aggregate, it cannot intersect any of the objects in that aggregate. Thus, as
illustrated in figure 5, the aggregate strocture acts as a means of pruning the search for intersecting
bounding boxes. Since objects within an aggregate tend to be near each other (both spatially and
conceptually), this pruning method has worked well in practice.

____________ ____ ,
I

B•
I
I
I
I
I

I I
I I , __________ llllllllliil
I

L _____________ e _________ ~-_.
(a)

~
B E F

/\
C D

(b)

Figure S: The bounding box of an aggregate encloses the bounding boxes of all its children. This is
used to prune the search. For example, if only object F is changed, then the Update routine
will note that the modified screen area does not intersect aggregate B, and so will not test
against objects C or D (thus saving one rectangle intersection test here).

In contrast. if we had used a mo_re complicated rectangle intersection method, the update algorithm
would not have been able to take advantage of the implicit back-to-front ordering afforded by
aggregates--0bjects or aggregates would be ordered by their spatial position, which would not correspond
to their back-to-front ordering. Thus, the update algorithm would have to either expend a great deal of
effort maintaining a secondary back-to-front ordering within each spatial position, or make two separate
passes, one to identify the objects that must be redrawn, and a second to sort the objects from back to
front and redraw them. This extra complexity offsets the possible gain from the more complicated
intersection methods.

4.4 Special Cases
The previous section detailed bow the algorithm works in most situations. This section considers an

important extension to the algorithm and a couple of the algorithm's support functions.

Garnet Compendium - 39- Graphical Output

4.4.1 Fastdraws
Although our basic implementation is reasonably fast under normal usage, it is not quite fast enough

for, say, mouse tracking in a complex interface. We provide this added functionality by way of
Fastdraws. Any graphical object can be a Fastdraw, so long as it adheres to two constraints:

• it must not be behind any noirFastdraw objects; and

• it must be drawn using XOR 8

It would be too expensive to check these conditions for each object at every update; instead, programmers
declare an object to be a Fastdraw by setting its : fa.stdraw-p slot to T. Then these two constraints
allow a Fastdraw to be rapidly drawn and erased (that is, redrawn), as both of these operations can be
done without checking if the Fastdraw obscures or is obscured by other objects.

Incorporating Fastdraws requires modifying the update algorithm in several ways. First, when
traversing the Invalid-Objects list in section 4.1, Update must check if any of these objects is a
Fastdraw. If so, Update must

1. Remove the object from the Invalid-Objects list, and check if it has actually changed
(just as is done for the normal invalid objects). If it has, then it needs to be erased and
redrawn correctly, so continue with the following steps:

2. Add the object to the Changed- Fastdraws list so that it can be drawn later. Also, mark
it as being on this list, so that the Update routine will defer redrawing the object (in section
4.3) until all non-Fastdraws are redrawn first

3. Immediately erase the object, which is done by redrawing it, using the values of its
interesting slots from the previous update. Note that this does not require extra storage, as
the algorithm already stores these values at each update so that it can tell which objects on
the Invalid-Objects list have actually changed.

At this point, all the Fastdraws have been removed from the Invalid-Objects list, and all of those
that have actually changed have been placed on the Changed-Fastdraws list and have also been
erased. The process now proceeds as normal, updating all the remaining invalid objects. However, after
Update has processed all of the normal (non-Fastdraw) objects, it must then draw all the objects on the
Changed- Fastdraws list This is appended as the last step in the drawing phase.

To see why this results in faster performance, consider the common case of dragging a rubber-band line
across the screen. During this time, the only object that changes should be this line. Thus, this is the only
object on the Invalid-Objects list Upon discovering that the object is a Fastdraw and that it has
changed position, the Update routine moves it to the Changed-Fastdraws list. and erases the old line
(by redrawing it). Since the Invalid-Objects list is now empty, Update bypasses the main part of
the routine, and immediately processes the Changed-Fastdraws, drawing the line in its new position.
Note that no intersection tests took place. Note also that the performance is independent of the number of
objects on the screeir-with this algorithm, a rubber-band line can track the mouse over thousands of
objects.

8Drawing using XOR directs the window manager to use the exclusive-or of the bits from this object and the bits already
underneath il When the object is drawn a second time using XOR, it is actually erased, and the screen is left in its previous state
before the object was originally drawn.

Graphical Output -40- Garnet Compendium

4.4.2 Add and Remove Component
Graphical objects are registered with the Update routine by the Add-Component routine. which adds

an object to an aggregate. If this aggregate is in the aggregate hierarchy of a window. the object will be
displayed in that window in the next call to Update. Add-Component also takes an argument indicating
where the object should be added in relation to the existing children of the aggregate. Thus. you can add
an object such that it is behind or in front of an existing object. at the front or back of the aggregate, or at
a specific depth in that aggregate. nus is what guarantees a total ordering of the objects from back to
front in an aggregate hierarchy.

There is also a Remove-Component routine, which removes an object from an aggregate (and
thereby serves to unregister objects with the Update routine). If the removed object is displayed in a
window, it will be erased in the next call to Update. As the removed object can be added to a different
window, or possibly even destroyed, it does not suffice to keep a pointer to it for the next call to Update.
Instead, Remove-Component merges the bounding box of the object into the
Initial-Clipping-Region of the window. When Update determines the clipping regions (in
section 4.2), it actually initializes one of the clipping regions to the window's Initial-Oipping-Region.
nus guarantees that removed objects will be properly erased from the window.

5. Performance
The performance of the incremental Update routine is critical for Garnet-style programming to be

desirable or even practical. That this routine must be incremental is made clear by the graphs in figures
6a and 6b.9 Figure 6a shows the performance, in terms of the number of screen refreshes per second,
against the total number of objects being moved. These objects were moved above a simulated graphical
interface with 201 objects. The total update method performs very poorly, never accomplishing more
than two updates per second! In contrast, the incremental version achieves nearly 40 updates per second
when only one object is being moved. As the graph clearly shows, the improvement is substantial. The
graph also shows that the incremental version deteriorates as the number of objects being moved
increases (however, it still remains faster than the total method). This is because it is optimized for the
most common siruation in user interfaces when only a small percentage of the total number of objects in
the screen have changed. Because of this, a more important question is how performance deteriorates as
the number of stationary objects in the background increases. This is addressed by the graph in figure 6b,
which moves only one object over increasingly complex backgrounds.10 Again, the total update method
performs far worse than the incremental method, achieving less than five updates per second with as few
as 70 objects in the interface! As is expected, the relative improvement with the incremental version
increases with the complexity of the interface.

Both graphs also contain a third line labeled "Fastdraw". nus line indicates that the moving objects
were declared as Fastdraws, thereby showing the performance of the Fastdraw mechanism. The graph in
figure 6b shows (subject to some noise) that one Fastdraw can be updated roughly 70 times per second,
and that this is independent of the size of the interface. nus speed is more than adequate for providing
mouse-tracking capabilities. The graph in figure 6a shows the deterioration of Fastdraws as the number
of moving objects increases. This occurs for the same reason that it happens in the standard incremental
version-it is uncommon for more than just a small percentage of the objects in an interface to change

9Th.e data for these graphs was collected on an IBM RT with 12 Mbytes, running Mach, CMU CornmonLisp, CUC, and
Xll/R3.

1<>rhese background interfaces were generated randomly in such a manner as to approximate the layout and aggregation of
typical user interfaces created with Gamet

Gamet Compendium

•

• •

. ' :
I :
I :
I :
I :
I :
I : . ~ ~

~ \
\ ·.

•
' ... \ \ ..
~ ·· ..
' ·.

••

\~. • ... ' .. '-...
',,

-41 -

I::: :=-I

._...._, ·•······
-·---:::·.:·.:-.::.::~·=::.·.:.·~·:o·.:.·.:.·.:.·.:.·.:.'.::.:.·:,:.:e

" •

(a)

•

Graphical Output

r
l

t r· .. ,
~·~

•

• •• ,. 29 -.._,,,_,.

(b)

Figure 6: Perfonnance of the total and incremental update methods. Pan (a) is for moving various
numbers of objects over a fixed. 201-object simulated interface. Pan (b) is for moving only
one object over various-sized simulated interfaces. The line labeled "Fastdraw" is for the
incremental method when the moving objects are all Fastdraws.

between updates.

6. Related Work
A number of UIDE's, including Grow [Banh 86], Apogee [Henry 88], and STUF [Olsen 86], provide

suppon in one fonn or another for the graphics associated with an application. However, both Grow and
STUF force the application to manually refresh the screen by calling appropriate draw methods. Apogee
will automatically refresh the screen by updating everything, but. as demonstrated in Section 5, Garnet's
incremental updating algorithm can provide significantly better perfonnance than total updating. A
number of commercial interface builders, such as NeXT's Interface Builder and the Prototyper from
SmethersBames, will automatically maintain the graphics associated with the widgets that go around the
application's window, but do not provide automatic suppon for the application graphics themselves
beyond simply setting clipping regions and computing what area to redraw after scrolling operations.

Very little infonnation on incremental redisplay algorithms appears to have been published in the
literature. One notable exception is the ItemList data structure, implemented by Roger Dannenberg, to
handle non-hierarchical collections of objects [Dannenberg 90]. The algorithm presented in this paper

Graphical Output - 42 - Gamet Compendium

differs from the ItemList data structure in that it supports a composition mechanism for objects and
allows objects to be connected via conmaints. One of the key problems that incremental display
algorithms must address, rectangle intersection, has been extensively studied [Samet 88]. However, as
noted in Section 4.3, the algorithms that deal with rectangle intersection do not assume a layered space of
rectangles, nor do they exploit the hierarchical representation of objects afforded by aggregates. Thus,
without modification, they are inappropriate for the task at hand.

7. Future Work
Although Gamet has achieved its perfonnance goals, we hope to improve it even further. Perhaps a

variant of one of the rectangle intersection techniques from Samet's survey can be developed which does
not require excessive overhead in order to maintain the back-to-front order of the objects. More work
must also be done to detennine how many clipping regions should be used, as well as the method for
arbitrating the merging of the bounding boxes into these clipping regions. Either of these changes could
result in significant increases in perfonnance within the Update routine. Further analysis of applications
created with Gamet is also necessary to help quantify the strengths and weaknesses of this approach.

8. Conclusions
The Gamet UIDE makes it significantly easier to create efficient and portable graphical user interfaces.

This is accomplished in part by the screen refresh algorithm presented in this paper. As the algorithm is
automatic, it relieves the programmer of the tedium nonnally involved in writing and porting redisplay
code. 1be savings in development time can be significant For example, a moderate-sized graphical
editor which required 10 to 15 hours to develop with other UIDE's took only 2 to 4 hours to create using
Gamet. 1be resulting code is also reasonably efficient as the Update routine is incremental, trying to
study as little of the data and modify as little of the screen as possible on each call. In fact, as the results
in section 5 indicate, it is due to this incrementality that Gamet can efficiently support interfaces with
hundreds of objects. Gamet also provides Fastdraws, which allow for mouse-tracking speed of a small
number of objects over arbitrarily large interfaces. In summary, Gamet presents an easy-to-use, efficient,
ponable graphical output model which greatly simplifies the task of creating graphical user interfaces.

Acknowledgements

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARP A Order
No. 4976, Amendment 20, under contract F33615-87-C-1499, monitored by the Avionics Laboratory, Air
Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB,
Ohio 45433-6543. 1be views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government

The Gamet system is being designed and implemented by Brad Myers, Dario Giuse. Roger
Dannenberg, Brad Vander Zanden, David Kosbie. Ed Pervin and Andrew Mickish. Earlier contributions
were made by Philippe Marchal, Pedro Szekely, Jake Kolojejchick and Lynn Baumeister.

Garnet Compendium -43 - Graphical Output

References

[Barth 86] Paul Barth.
An Object-Oriented Approach to Graphical Interfaces.
ACM Transactions on Graphics 5(2):142-172, April, 1986.

[Dannenberg 90] Roger B. Dannenberg.
A Structure for Efficient Update, Incremental Redisplay and Undo in Graphical

Editors.
Software-Practice and Experience 20(2): 109-132, 1990.

[Giuse 90] Dario Giuse.
Efficient Knowledge Representation Systems.
The Knowledge Engineering Review4(4), 1990.

[Henry 88] Tyson R. Henry and Scott E. Hudson.
Using Active Data in a UIMS.
In Proceedings of the ACM SIGGRAPH Symposium on User Interface Software, pages

167-178. Banff, Alberta. Canada, October, 1988.

[Myers 89] Brad A. Myers.
Encapsulating Interactive Behaviors.
In Human Factors in Computing Systems, pages 319-324. Proceedings SIGCHI'89,

Austin, TX, April, 1989.

[Myers 90a] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David
Kosbie, Philippe Marchal, and Ed Pervin.
Comprehensive Support for Graphical, Highly-Interactive User Interfaces: The Gamet

User Interface Development Environment.
IEEE Computer 23(1 l):To appear, November, 1990.
Reprinted in this technical report ..

[Myers 90b] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David
Kosbie, Philippe Marchal, Ed Pervin, Andrew Mickish, John A. Kolojejchick.
The Garnet Toolkit Reference Manuals: Support for Highly-Interactive. Graphical

User Interfaces in Usp.
Technical Report CMU-CS-90-117, Carnegie Mellon University Computer Science

Departmen4 March, 1990.

[Olsen 86] Dan R. Olsen.
Editing Templates: A User Interface Generation Tool.
IEEE Computer Graphics and Applications 6(11):40-45, November, 1986.

[Samet 88] Hanan Samet
- Hierarchical Representations of Collections of Small Rectangles.

ACM Computing Surveys 20(4):271-309, December, 1988.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does no1 d1scrim1nate and Carnegie Mellon Univers ty is required not
to discriminate 1n admissions and employment on the basis of race. color. na11onal ortg111 sex or
handicap in v1olauon 01T1tle Vt of theCiv I Rights Act of 1964. Tiiie IX of the Educa11onal Amendmenls
of 1972and Section 504 of the Rehab1l1tat1onActof 1973or other federat,stale,orlocallawsorexecuttve
orders. In addition, Carnegie Mellon Univers11y does not discriminate in aomiss1ons and employment
on the basis of religion, creed, ancestry, belief age veteran status or sexual onentat1on in v1olat1on
of any federal , state, or local laws or execullveorders Inquiries concerning appl!cat1on of this pohcy
should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pillsburgh PA
15213, telephone (412) 268-6684 or the Vice President lor Enrollment, Carnegie Mellon University,
5000 Forbes Avenue Pittsburgh, PA 15213 1elephone (412) 268-2056

..

.•

